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1. INTRODUCTION AND PROBLEM BACKGROUND

 The design and control of very complex high-risk dynamic systems, and the need
of coping with the increasing risks caused by technology to human life have led to the develop-
ment of new tools for knowledge management, such as expert systems, "intelligent" tutoring, or
autonomous robots.
  This paper presents the autor’s point of view on the state of research in the field of "reasoning
models", and gives some  information on a study currently in progress at ENEA, which is ori-
ented towards the development of "intelligent" supports for human reasoning in problem solv-
ing activities. Our interest is particularly focused on the identification and "design" of decision-
making function which:
   - occurs during the activity of a plant-operator, seen in the context of specification and design
    of  knowledge-based CAO (Computerized Aid for Operator ) systems [Gadomski 88], [Bal-
ducelli,89], [Businaro,88], [Gadomski,92].
    - is involved in the reasoning function of intelligent  autonomous robot,
    - should be the basic functional element of decision-support systems,
and
   - is necessary for modeling of  a colaboration in multi-agent  systems. 

    In the past, the concept of "decision-making" has been involved in many conceptual systems.
Numerous brilliant observations have been made, but none of them can be onsidered sufficient
for effectively implementing the human-like decision-making process" in a computer. 

   The first doubt which we encounter in such a problemis : does the natural language expres-
sion "human-like decision-making process" really refers to one separable abstract process or is
the same expression used in the various conceptual contexts with similar but different mean-
ings?
   Many people believe that the expression "human-like decision-making process" has different
meanings in different contexts of human activity, specified by the problem domain, the kind of
situation and the properties of the human agent. 
  From such a perspective it should only be possible to individually define and analyse
"domain-dependent" decision-making processes using "man-independent" formal logical tools. 
   From the other point of view a generalisation of human-like decision-making processes can
be made which is  useful for the specification of domain-dependent decision-making . 
    Although many computerized decision support systems have been developed, there is no
general agreement about the modeling of decision-making processes/function.
Many very different decision support systems and models of decision-making are the results of
explosive research and designs.
 The nature of decision-making is nowadays analyzed by: mathematicians, engineers , philoso-
phers , sociologists,  psychologists and economists, each in its own professional context.
   In this paper I attempt to look at a decision-making  from the points of view of both the engi-
neer and the physicist.

    In such a context the old assumption of the physicists on the existence of a uniform descrip-



tion of the universe (description based on our measurements and observations)  should be modi-
fied into an analog assumption ( or work  hypotesis to verify ) on the existence of a uniform
description of " intelligence".

  At this point it may be useful to mention some engineering applications of a model of
decision-making :

       - to serve as a conceptual tool for the identification,  specification and verification  
         of specific decision-making processes
      - to be implemented in decision support systems , or in autonomous robot reasoning systems
    - to be implemented in computer aids for software design (CASE) tools for the design of        
        "intelligent" systems.

    In this paper I suggest, at the beginning, the "extraction"  of decision-making from the con-
text of human mental activity in order to analyse it in an abstract way.
  This operation requires an initial specification of a decision-making which will delimit the
scope of this term.
      I then limit the consideration to action-oriented  decision-making , where "action" is under-
stood as being a behaviour recognised by predefined human, and which is conceptualised by
him as a goal-oriented behaviour of human or another artificial agent .
 I suppose that such decision-making are the only to have  practical engineering sense. 

2. RESEARCH CONTEXT AND BASIC PARADIGMS

    Research situation in the field of "intelligent systems" is much more complicated than it is in
physics. In physics, a physicists society is assumed as being an external "axiomatic" observer.
In the case of reasoning processes analysis , the observers are also elements of their own re-
search domain.
   We can distinguish two main approaches to "reasoning problems".
  The first is based on the ENGINEERING DESIGN PARADIGM, which is request-based de-
sign of everything software engineers are able to specify in terms of system goals and functions,
and can be put into a computer.
   The second is founded on the SCIENTIFIC RESEARCH PARADIGM,  i.e. on the identifica-
tion (=modelling) of repetitively measured or , more general, observed fenomena. 

 As a model of human "decision-making" which satisfies the  scientific research paradigm and
is also computer  implementable, does not exist [Winograd,89], [Natali,83], the software engi-
neers use some results of the scientific approach [Ullman,88], [Kusiak,88].

 In practice, not all the identified properties of human reasoning are necessary in engineering
models of reasoning. From the above perspective, in this paper human reasoning is reduced to
human problem recognition/specification, and decision-making is treated as one component of
this activity.
   A mixed approach which inregrates both paradigmes, requires identification of the properties
of human reasoning during  top-down goal-oriented design of artificial reasoning systems.



   The identification of a process of human "decision-making" can be based on the data obtained
from:
    a. the external observation of a human-agent behaviour by another human-agent (modeller),
    b. the information given by another human-agent 
 and
    c. the personal experience of the analyst (modeller).

  In general, personal experience and mental historical records are considered an acceptable
source of data for building a  model of the reasoning process [Polya,57],[Newell,72].

    Verification of the model is based on:

     (a)    IMPLICIT CONSENSUS in a predefined human community,  when the individual        
                   motivations of one member are not known by the others ;
         (b)      EXPLICIT CONSENSUS, when an accepted theory or another conceptualisation   
                   system has been established and a proof can be/is given insite it;
      (c)    UTILITY CONSENSUS, when sucessful  application of the  model  to the solution                    
                   of selected practical problems has been performed; 
         (d)     NATURAL CONSENSUS, when  experimental verification of  the model  is 
                   performed.

    In the case of the design of knowledge-based decision support systems, not only, the D-M
model but also a formal structure of knowledge bases which should enable recognition of the
completeness and consistency of any individually implemented knowledge system, are re-
quired.
 The main problem referred to in this task is the lack of explicit consensus on such a conceptu-
alisation system.

3. T O G A  METHODOLOGY

    An approach employed here to the modelling decision-making, is  based on a rational con-
sensus on the scientific and engineering paradigms, and is called TOGA ( Top-down Object-
based Goal-oriented Approach) [Gadomski,86,89,90,91]. 

       TOGA is composed of three basic elements:

  - the Theory of Abstract Objects (TAO), which is a domain independent conceptualization      
       system;
   - the Knowledge Conceptualization System (KNOCS),  which includes  the  axiomatic    
   assumptions and definitions related to: the real-world conceptualization, intelligent agent        
     (IA), and domains of  IA goal-oriented activity; 
    - the Methodological Rules System (MRUS) for the specification of complex problems. 

The TOGA theory is partially selfreferenced and selfverified.



3.1 TAO: Theory of Abstract Objects

  Any theory can be considered as a frames system which enables structuralization and opera-
tion over a certain class of sets.  In the case of TAO, its domain is any numerable set called
’primitive’. 
   TAO is a frames system which enables the structuralization of ’primitives’ in the form of: 

  - Objects, specified by their names, attributes’ names, values, and value domains;
  - Relational isolated networks of objects, called ’world-of-objects’ (w-o-o) which:

 * can be arbitrarily divided into ’systems’ and their ’environments’,
  * can be aggregated in ’universes’ of objects.

   TAO includes the definition of the class of singular objects and the formalization of the con-
cept of the ’point-of-view’ referred to an 
object.
  The singular objects are particular objects which can create or modify other objects inside
their world-of-objects.
  The singular objects are ’goal-driven’ and are called ’abstract agents’ (AA). Certain specific
subclass of AA is called ’abstract intelligent agents’ (AIA).  AA can be treated as "normal" ob-
jects in another universe of objects. 
   The TAO theory includes operations set and rules, which enable 
creation and modification of TAO structures [Gadomski].

  We can notice, that TAO has an algebra property.

  Remark:
  TAO can also be seen as a generalisation and extension of three existing approaches: entity-    
  relationship approach object-oriented programming/design , and frame system , see for ex.         
   [Minsky,75], [Ullman,88], [Natali,89].

   TAO has the recursivity property which is still under our investigation. It is interesting to
mention that the development of TAO is also driven by the rules of TOGA. 

 TAO can be considered as a conceptual interface between KNOCS and the AI languages.
Therefore, TAO is computer implementable, and can be used as the basic ’conceptualization
system’ for modeling  an IA.

3.2 KNOCS: Knowledge Conceptualization System

   The Knowledge Conceptualization System (KNOCS) is a system of axioms and definitions
for the description and conceptualization of the real world from the perspective of a real IAs, in
terms of TAO.
   KNOCS assumes that every product of the human reasoning activity  can be conceptualized
in the frame of the Theory of Abstract  Objects. 
    KNOCS enables the conceptualization of real world agents such as,  industrial plants, robots,
human operators or organizations, and it can be used as an interface between the knowledge en-
gineer and a domain expert. 



3.3 MRUS: Methodological Rules System

   The Methodological Rules System (MRUS) is a methodological approach to the ’top-down’
knowledge ordering for the specification of complex problems.   MRUS can be called "hyper-
inference engine".
   It assumes that, at the beginning of a problem specification, the knowledge of the problem
solver agent is incomplete and not  goal-ordered.

   The problem specification activity is based on two fundamental  mechanisms: 

- the former is called the ’top-down’ mechanism, and indicates the
specification direction: from very general statements to the details
which can be the elements of the problem solution; these specification
rules are based on the ’generalization hierarchy’ defined in KNOCS; 

- the latter is called the ’goal-driven’ mechanism; it always
controls the links between the specified/identified object and the
problem ’goal’ object; this mechanism creates bottom-up rules
(synthesis rules). 

    MURS can be a useful tool for checking the correctness of the goal-oriented activity of KEs,
and for the validation/verification of  their products. 

3.4  Selected  TOGA  assumptions

       Here, some basic TOGA assumptions and definitions are presented.

A1. Every product of the human reasoning activity can be conceptualised and transformed in
the frames   of TAO.

 Def.
   The ’conceptualisation system’ is an empty frames system, and an operations set which is
defined on these frames.

A2. An ’Agent’ is a dynamic system which interacts with its environment in order to obtain
some required/desired/preferred responses from the environment itself.
 In other words, it tends to achieve some preferred states of its  percepted world, i.e. it has a
’goal’. 

  From the point-of-view of an external observer an Agent which interacts with the Real-World
is called a Real Agent (RA),  and its conceptualization, in the terms of its interactions with  the
Real-world, is called an Abstract Agent (AA).

   Let us identify the internal functional structure of an Active Agent. 



 A3. ’ Abstract Agent’ is the name of the trial system composed of the objects called:

 ’domain-of-activity’( d-o-a), ’knowledge’, ’preference’.

  The ’domain-of-activity’ and the ’knowledge system’ can be structured as a set of abstract
systems, and the ’preference system’ is always a single abstact system.   The ’domain-of-
activity’ is always considered as the ’information source’. Information can refer either to the
state of the d-o-a itself or to the state of another object. In this last  case, the information is
structured according to the conceptualization of the d-o-a. 

  The d-o-a of an AA is the ’reference domain’ of its ’knowledge system’, and, from the point
of view of an external agent "observer", it is called  ’Knowledge Reference Domain’ (KRD). 

  Every ’knowledge system’ is always referred to a preselected d-o-a, and  it is composed with 
’passive knowledge’ and ’active knowledge’. 

 The ’passive knowledge’ of  AA  related to a  d-o-a ,  is  a  set of conceptualisation systems
(frames), it is used by the physical agent  to  transform  signals  from d-o-a  to a form of infor-
mation. 
Information  are the date for  ’active knowledge’.  In this sense, the ’knowledge system’ is the
carrier of different reasoning processes, for ex. the information processing or the information
choice. 
 Knowledge is divided into: ’domain-knowledge’, ’operational -knowledge’, and ’management-
knowledge’.

Def.
 ’Domain-knowledge’ is a symbolic representation of the  domain-of-activity in the frame of 
conceptualisation systems, and a set of operations available on this domain., i.e it includes  too
an active knowledge.

Def.
 The ’operational knowledge’ of an  agent X, is a set of possible interventions for X , expressed
in terms  of its d-o-a conceptualisation (procedure, rule, menu), and referred to a certain set of
states of the d-o-a. The ’operational knowledge’ includes  also ’passive’ and ’active knowl-
edge’.

Def.
 ’Reference relation’ (RR) is a complex relation between a knowledge and its reference domain,
for ex., between the domain knowledge  and state of the d-o-a of an active agent. RR is estab-
lished by AA, and is verifiable by its goal-oriented actions.

Def.
   The ’Management-Knowledge’ (MK) of an active agent is a set of operations and rules avail-
able to him, and referred to the  application of his/its operational- , domain-knowledge, and
preference-relations system. MK includes also strategies  of AA. 

 In TOGA, knowledge is structuralised in two hierarchies: the generalisation hierarchy and the



metaknowledge hierarchy.

 One domain-knowledge, i.e. referred to a defined d-o-a can be divided into generalisation-
levels (GL) , In this hierarchy, attributes of an object established on one GL are decomposable
on the lower GL. All the definitions established on higher GLs are mandatory on all lower GLs.
  In the case of metaknowledge levels , they obey the following rule:

n-th metaknowledge level is the reference domain for the (n+1)th metaknowledge, 
                   where n=0,1,2...

For ex. if in the particular situation a preselected D-M is impossible in the problem-domain then
the problem conceptualisation can be shifted on a higher GL or on a meta-level of this problem.

The ’preference system’ includes relations in  a form of rules between possible information and
active knowledge . These relations are ordered according a  priority scale.     

A3. The ’Reasoning’ process is a dynamic property of the AA knowledge system.

The goal-oriented reasoning processes start from the activation of the ’knowledge system’ from
some states of the ’preference system’.  The results of these processes change the current state
of the d-o-a of   AA.
The ’preference system’ activates the knowledge system by means of the generation of a 
’intervention-goal’. The ’intervention-goal’ is the conceptualization of the state of the d-o-a to
be achieved.

Def.
 ’Intervention-goal’ is the specification of some of the  attributes of the state or process in the
environment of the  abstract agent established by the preference system with  maximal priority. 

The preference system activates the knowledge only if a ’intervention-goal’ is established . 

Reasoning process is composed with associations, inferences, and  choices. 

One d-o-a can be conceptualised from different ’points-of-view’ (p-o-v) dependending on the
assumed activity goal.

A4. The Real-World (RW) is a quasi infinite source of ’information’. 
   Therefore, first level human domain-knowledges is also  quasi infinite.

On the grounds of the above mentioned assumptions and definitions, it is possible to define that
an Abstract Agent which is able to ’reason’ about its own knowledge and preference is called 
an ’Intelligent Agent’.



A5. AA with metaknowledge levels which enable it to operate on the knowledge, and prefer-
ences is called  ’Abstract Intelligent Agent’ (AIA).

Let us define some properties of an ’Abstract Intelligent Agent’.

Def.
The functional structure of an ’Abstract Intelligent Agent’ is a tree network of AAs. The AA at
the root of the tree network is called the basic-AA. Starting from this basic-AA, the ’knowledge
system’ and the ’preference system’ of each AA, in any level of the tree, is the domain-of-
activity of the AAs on the subsequent level. 

The d-o-a of the basic-AA is called the basic-domain-of-activity  (b-d-a) of the AIA.

A6. Every process A relying on a behaviour of physically  realized AIA (X) in his/its physical
environment, or on  the change of a state of his/its knowledge or preferences is CONSCIOUS if
X has such a conceptual system where the   process A is describable and he/it can perform it.
       In this case, we can say that process A is observable  for X.

A7. A goal-oriented conscious activity of a human-agent can be  conceptualised by its observer
(another human-agent) as  the activity of the AIA. 

 The first conscious d-o-a of a man, is the representation of the RW in the form of symbols ob-
tained from the human  ’sensorial perception’. For this reason, the first conscious d-o-a of the
IAA is its/his first level domain-knowledge.

A8. Any arbitrarily selected artificial object from a d-o-a  of a human agent, can be conceptual-
ized by the decomposition of the interrelation between a system and  its goal (GSI).
The decomposition frame is composed of a network divided  into the following layers: 

    ’goal layer’, ’functions layer’, ’processes layer’, and   ’system layer’.

Def.
  The ’System-goal’ (or design-goal) of a system X in an evironment En , is the specification of
some changes or  properties of the En required by the user or creator of X   which should be/are
obtained by the interaction between X and  En. 

  For this reason, the system-goal must be expressed only in terms of the environment descrip-
tions, and can only be established by the system creator or its user.

  The GSI conceptual frame allows the decomposition of the relation between a designed, modi-
fied or identified system, and its goal. Of course, any "natural" object can have an infinite num-
ber of functions and goals, i.e. they depend on particular applications of an analyzed object by
the human-agent.

 



A9. If the d-o-a of an AIA X, includes another AIA, Y, then   X’s domain-knowledge related to
the goal-oriented activity  of Y, can be conceptualised in terms of formally  defined :
’intervention-goals’, ’tasks’ , and ’actions’   referred to the Y’s d-o-a .
  

Def. 
 The ’Task’ is intervention-goal oriented properties of  ’action’, it is expressed in terms of d-o-a
description,  and describes what changes must be introduced in the AIA for achiving
’intervention-goal’. 

 Def. 
   The ’Action’ is a specification what AIA can do for the realisation of tasks, i.e. to achieve the
predefined  intervention goal. Action is expressed in terms of operational and domain knowl-
edge.

   It means, an action must depend on executor possibilites.
   We can mention, that one task can be performed by execution different alternative actions,
and from the identification point of view, one selected action can be recognised as the carrier of
different tasks.

 
’Tasks System’ (task scenario) is executor independent but it depends on goal constrains (time,
cost,..).

A10. From the p-o-v of the specified goal, an unknown ignorance  does not exist, i.e. any igno-
rance must have attributes  because they define relations for a closure of any w-o-o. 

A11. Every system in the domain of activity of an AIA can either be  specified (constructed)
using the ENGINEERING DESIGN PARADIGM   or, if it was there before, identified using
the  SCIENTIFIC RESEARCH PARADIGM.

   One of the "interfaces" between ENGINEERING DESIGN and SCIENTIFIC RESEARCH
PARADIGMS is builded on a definition of the couple:  ’function’ , ’carrier relation’ , ’process’.
 
  Here, I must add that ’function’ is not the name of a mathematical  relation but it is the name
of a goal-oriented property of a pre-identified process. 
  From the designer perspective , when a function is defined, its ’carrier process’ is a realisation
of this function in an assumed context (certain ’world-of-objects’). 
   In the situation of modeling of a human decision-making, we must assume that this unknown
process/function is an element of human goal-oriented reasoning, and is identifiable by its at-
tributes.

Remark:
    The results of operations available for a AIA in the frame of  an accepted conceptualization



system, can be true, false or non verifiable in a preassumed reference d-o-a.

 Human reasoning referred to a certain d-o-a, is based on many conceptual systems and associa-
tive processes. A mixed, not verified in "real time" change of the conceptualisation context, fre-
quently leads to false conclusions and intuitive  convictions , i.e. to the construction of false or
’fiction  domain-knowledges’ which no longer have reference to any physical or abstract d-o-a
of the human agent. We can notice that the human mind is full of such types of constructions. 
  The above situation can be omited in the design of an  artificial AIA. 

4.  A MODEL OF ACTION-ORIENTED DECISION-MAKING

4.1 Bulding the model

 The modelling of a D-M is the modeller/designer activity in his/its d-o-a.  Every D-M is based
on a choice.
   According to the TOGA conceptualisation, a D-M can be represented as an object in three-
Dimensional Discrete Space (DDS).
 The first dimension called GSI (Goal-System Interrelation), is divided into four layers: goal,
function, process ,and system.
  The second dimension gives the possibility of setting up  the model on different generalisation
levels (GL), which can be organised arbitrarily ( from the initially assumed model definition up
to the details level, when the model implementation will be possible).
   The third dimension is used for a set up of the system description in the hierarchy of abstrac-
tion, from structures  of directly measured (physical) attributes to highly abstract conceptualisa-
tions.
    The TOGA methodology is a rigorously goal-oriented tool . 
  It is based on: ’problem’ definition, rules of definition building and is destinated for problem
specification in its user d-o-a ( which should be located in a computer ).
   Problem specification starts from the user knowledge collected in different conceptual sys-
tems and the initially specified goal which he intends to achieve.
   The pyramidal , top-down problem structuralisation requires bottom-up goal-driven evalu-
ation of user knowledge.

   The requested completeness of a problem description on any  GL level in DDS space, makes
the IDENTIFICATION OF USER  IGNORANCE ( temporal BLACK OBJECTS ) necessary,
and indicates the knowledge which should be acquired. 

   The construction of an A-O D-M, requires an initial specification of the terms used. At the
beginning of this task, we should construct a top definition of a ’decision-making’  for its rec-
ognition in the context of the action-oriented  reasoning. 

    The model is constructed top-down in the generalisation  hierarchy by the identification of
decision-making carrier systems , neighbourhood processes, and the specification of decision-
making functions necessary for the achivement of the our task goal.
   The conceptualisations of the model , on every GL level,  should be verified by its confronta-



tion with the existent  data, and with the model attributes specified on the higher  GL level.

   From user points of view, these models become his conceptual subsystems for a structuralisa-
tion of his specific domain-knowledge.

4.2. Specification, Identification and Verification 

   In this paragraph we demonstrate only some elements of this model construction  ( TOGA is
mainly destinated for computer as the "intelligent" support for problems specification).

   The first thing we must do, is to accept an "axiomatic" top definition of an Action-Oriented
Decision-Making. All model conceptualisations , constructed after, must satisfy such definition.
This definition is also necessary for the identification of an abstract A-O D-M in the human
reasoning process. 

 Omitting here, initial details, we form the following  identification-definition (i-def.) of the A-
O D-M process by conjoining an A-O reasoning definition and a D-M definition.

  An A-O D-M process is a D-M process executed in the frame of an Action-Oriented reasoning
process. For this reason, an action-oriented reasoning process is the domain of search and iden-
tification of an A-O D-M. 

I-Def. of Decision-Making in process conceptualisation

     D-M is defined on a set of ’Alternatives’ (Al), and  is a process of the CHOICE (CH) of only
   one of its  elements (al), according to the established criterium  (Cr), and relative to the           
      decision-maker knowledge  on the state of its d-o-a. The element ’al’ is called  DECISION.

   Of course, the definition of a D-M can be formed in a different way , but at the end , it must
have the same process-based interpretation.

Functional allocation of D-M

    According to the above definition, a D-M can be considered  the process involved in all be-
low presented meta-task (m-task) of an action-oriented reasoning system:

T1. Data acquisition (perception, conceptualisation, recognition),
T2. Situation assessment,
T3. Intervention-goal establishment,
T4. Task planning ( where tasks are expressed in terms  of domain-knowledge),
T5. Action planning ( where actions are expressed in terms of domain- and  

                         operational-knowledge,
T6. Action initialisation.

From the designer perspective, by applying the I-Def. to the above meta-task specification, we
identify A-O D-M as a m-task, which then substitute m-tasks: T3, T4, and T5.



  According to the previous model of AIA , decision choice is  performed in the context of :
- knowledge, 
- information,
- preferences,

and 
- physical abilities of AIA carrier system.

In this meaning, D-M does not depend on real situation of  IA physical environment. 

System allocation of D-M process

 D-M is executed by abstract D-M system. Any abstract system which interacts with the RW
must have its physical ’carrier system’. Fig. 1 illustrates relations between the abstract and the
real world of the Decision-Maker (D-Mer).
Fig. 2 and Fig. 3 successively show , the decomposition of  the external and internal worlds of
the D-Mer.

  We can mention that a ’decision’ of an A-O D-M depends directly on the following generic
attributes:

 a. Conceptualised SITUATION of RW d-o-a. It is expressed
in terms of domain-knowledge, and is called
’information’ (inf),

 b. Planned INTERVENTION-GOAL (ig). It is expressed in 
terms of domain-knowledge, and is an attribute of 
the preferences system.

 c. Set of ALTERNATIVES (Al) , which are descriptions
of actions executable by the D-Mer. 
It is an element of the D-Mer operational-knowledge,
or more precisely, 0-level operational metaknowledge
(An action is specified in TOGA by set of attributes,
where for the D-M, the assumed initial and final 
 state of the d-o-a are critically important).

 d. STRATEGY of choice (Sc). It includes the criteria for
 the evaluation of the utility of the alternatives,
for the achiving of the intervention-goal . A 
 complex Sc can also include ’consequence assessment’.
 Sc is a 1-level operational metaknowledge.

   Each one of the attributes has a value on its own GL, but is considered an object of the new
’world-of-object’, on a lower  GL.  All of them are involved in the CHOICE operation . 
  Therefore, all these objects must have a ’common attributes space’.

 Qualitative verification of the model



  Problem structuring in TOGA, is based on the introduction on every GL level some new con-
cepts from non structured, or  structured for other goals, domain-knowledge.
  Utility of such introduced terms is founded on consensus  concerning their general meaning
which are valide in analysed particular cases.  The definitions of these concepts are necessary
for their  decomposition on the next GL, and they must be formed in context of  attributes of the
problem goal.
    The GL level verification refers to the verification of properties of the problem specified on
this GL.
   In the case of a process modelling, qualitative dynamic  properties of the process are verified.

   Here, we show the mainline of qualitative verification of the model formulated on the top-GL
level.
   For such a demonstration , let us present our model in the form.

 decision = CHOICE [  ig,  Al,  Sc ]  inf ,

        where CHOICE is the decision operator and which is dependent on  the before defined
attributes [ ig, Al, Sc ], which acts on a pre-specificated situation (inf).

   This is a one-goal situation driven decision-making. Not correctly recognised decisional at-
tributes values lead to  false decision. For this reason, the "effectivness" of the decision (from
the goal ’point-of-view’) depends on the results  of neighbourhood reasoning subprocesses, and
is especially  important for the simulation of a human IA.

  The qualitative analysis of interrelations between the above attributes, enables the qualitative
confrontation of assumed states with the known real situations of human decision-making.

  The simplest approach to this verification, is to define two-values qualitative domains of the
specified attributes values, from selected but integrated point-of-view, (for ex.,a conceptualiza-
tion of the D-M attributes values from the top goal-oriented point of view) :

       inf { (sufficient, insufficient) or ( true, false), and ( time dependent, time independent)},

       Al {(sufficient, insufficient) and/or (usefull, useless) },

       decision { (satisfied, unsatisfied) or (true, false)}. 

        Sc { (unique, multiple) and ( consequence dependent, consequence independent)}. 

  The GL level model can also be verified by qualitative sensitivity analysis.

In the case of a multiagent D-M, the decision-making can be distributed according to the estab-
lished competences , for ex. relatively to the possible domains of consequences, and possessed
by decisional nodes, knowledge.
 



4.3 Problems of human A-O D-M modeling

   Theoretically, an artificial IAA can have an unlimited number of metaknowledge levels, and
the level of inconscius activity can be defined arbitrarily highly.
  Such a situation does not exist in the case of a human IAA, he is unable to completely de-
scribe, in D-M real-time, his own first level knowledge. The access to this knowledge and the
memorization of executed reasoning operations, are the  main problems of any man . Therefore,
for the modelling of human reasoning , a model of association network should also be attached
(where , such access depends on ’importance value’ of links between the elements of the
knowledge system ). Here we must mention that the mental conscious processes are executed
sequentially  but their carrier physical processes are executed in parallel.
  The next difficulty lies in the lack of concepual systems for the reasoning on higher
metaknowledge levels. 
   The human limitations referring to different general conceptualisations of D-M are analyzed
in many papers, see for ex. [Masuch,89], [Winograd,87].

   The other serious human problem is the stress perturbation of all reasoning processes
[Kan,89]. In our conceptualisation it could be described by inconscious signal propagation from
the RW to the reasoning physical system and in the end to the abstract AIA. The perturbations
of fixed parameters of the  abstract reasoning system, change the properties of reasoning proc-
esses and finally, their results. Such changes mainly refer to the ’importance’ attribute of asso-
ciation links in the man  knowledge base.

5. DECISION-SUPPORT SYSTEMS

5.1 Agent-oriented decision support

    Here, I would like to concentrate on the plant-operator decision support systems only. The
main plant accidents are  caused by attributes values of perception, reasoning and execution
processes specific to a man,i.e. errors of designers or operator staff. Plant behaviour unexpected
by the designer,  must be corrected by its users. 
  According to plant designer wishes, an operator should be a  strictly action-oriented IA,  but
an operator is a human agent, sometimes irrational, with limited , and only partially  controlled
intelligence. 
   Rational A-O decisions of a human plant operator depend on his:
      - current information about the plant status, 
      - his internal knowledge, 
      - preferences, 
and 
      - externally established particular task.

   The information about the plant can be considered complete, only during its normal exploita-
tion. In the case of its  abnormal behaviour, the operator’s information about the plant status is
sufficient for the recognition of the only foreseen types of abnormal events.

    In practice, the external task and preference system specify  what knowledge, and what infor-



mation must be available to the  operator.
    In particular, intervention requested situations, the operator has either incomplete or excess
knowledge/information.
   Such data are evaluated by the operator preference system. 
   The preference system can be conceptualised as a web of  potential intervention goals.
  According to Lind [Lind,82], the top operator goals( in GL hierarchy) are : production, eco-
nomics and safety.
   The first two goals are specified by the plant designer,and knowledge support can then be
established. The third  creates more important conflicting situations, and the plant status man-
agement must be performed on higher GL conceptualisation levels, for ex. to stop production
process.
    Such activity is risk, and maximal negative-consequence driven [Gadomski,92]. If in the
plant-designer perspective, the consequences of the operator actions and plant dynamics refer 
only to the plant status, then an artificial reasoning support seem to be very useful. In other
cases, a decision support may rely on:

 * fast and request-based operator access to hierachically
 organized information and action-oriented knowledge bases
 (domain, and operational),

 * situation-driven risk evaluation of possible consequences
 i.e. so called what-if simulation, 

 * suggestion of risk minimalisation strategy based on the
 risk specification previously defined by the operator.

 * current situation assessment according to the established
 information importance scale, and importance attributes
 ( for ex., risks, benifits).

   
    In complex plants, the consequences of immediately required  control actions, can refer to
plant staff and plant human or  ecological or technological environments. In these high risk
situations, a human component in the control system will alweys be necessary because the man-
agement of such incomplete and uncertain knowledge requires preferences established on the-
base of intrinsically [ Winograd,87] not explicity formalised  [Gadomska,89], [Gadomski,90] :
human axiology, social/political interests, and cultural traditions.

5.2. Multi-Agent Decision-Making

   The concepts of a distributed MAD ( Multi-Agent Decision-making) and  DDS (Distributed
Decision-making Supports) exist only in the context of the system composed of men or other
"intelligent" abstract agents. Such defined decisional system implicity assumes the existence of
two levels of intelligence, and two levels of  decision construction:  individual d-m, and com-
mon group d-m.
  MAD and DDS are  analyzed in different perspectives, see for ex. [  GDSS,  DGDSS, 



MAAW..].

  Here,  I would like  to recall the basic  properties of the agent   which influenced d-m, i.e: 
information,   knowledge, and  preferences  which are divided on  individual interests and
axiologies.  Let‘s assume  the following relative fuzzy value-domain  of  them: equal, not
equal.
    In this situation, we  can distinguish two ideal types of  MAD. 
   The first is based on cooperation, i.e. assumes explicity known common basic preferences.
  The second is concurrent , i.e. assumes that individual preferences are hidden,  and not domain
of negotiation.
   Both  require  different DDSs . The first can be called  CSS ( Cooperation Support System)
the second NSS (Negotiation Support System), but many real human roles require  DDS
which support in pararel, human cooperation and negotiation activities, for ex. menagerial
decison-making tasks.

6. CONCLUSIONS

  The paper presents some information about the current  problems in modelling of action-
oriented decision-making process . A-O D-M has been presented in two perspectives.
  From the first, it is viewed as one of the complex human  reasoning processes, from the sec-
ond as an assumption based  software system. The models of the artificial IAs, can be conceptu-
alisation tools for the identification of the A-O D-M viewed in the first perspective.

   Present results of research indicate that it is practically  impossible to separate human A-O
D-M from his A-O reasoning context. Therefore , only an integral identification of the human
dynamic reasoning system or human problem solving, should give useful results [Wang,89].
   Such identification must be performed in extreme real world conditions, which enable to use
the scientific research paradigm. On the other hand the modelling "in one attempt" of very com-
plex processes requires sequential top-down models construction because the direct measurents
of its internal attributes are not possible . Such modelling is based on the engineering design
paradigm. For both the perspectives, development of abstract intelligent agents  as conceptual
or  computer tools for the construction of models of human or  artificial IAs seems to be indis-
pensable.

    The knowledge domain-independent conceptual system TOGA ,presented in the context of
modelling of artificial A-O D-M, is also a proposal of general treatment of the goal-oriented
reasoning problem.

   I suppose that the following three hypotheses can be useful in the future analysis of human
technological activity:

        A. It is impossible to develop knowledge processing systems without a conceptualisation
of its users.

      B. If for the same physical process , model M1 in   conceptual system X and model M2 in 



conceptual system Y  are different but have been experimentally verified,  then they are either
equivalent or complementary.  I.e. a conceptual system Z should exist where these models can
be integrated to a model M3.

         C. A man is only a non ideal physical carrier of abstract  IAAs, but his preferences are
always domain of social,  cultural, axiological and interest negotiations which can never be ex-
plicity simulated, due to of "human nature".
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